Source code for porespy.generators._pseudo_packings

import logging
from typing import List, Literal

import numpy as np
import numpy.typing as npt
import scipy.ndimage as spim
from numba import njit
from skimage.morphology import ball, disk

from porespy.filters import trim_disconnected_blobs
from porespy.tools import (
    _insert_disk_at_point,
    get_border,
    get_tqdm,
    ps_round,
    unpad,
)

try:
    from pyedt import edt
except ModuleNotFoundError:
    from edt import edt


__all__ = [
    "pseudo_gravity_packing",
    "pseudo_electrostatic_packing",
    "_random_spheres2",
]


tqdm = get_tqdm()
logger = logging.getLogger(__name__)


@njit
def _set_seed(a):
    np.random.seed(a)


def _random_spheres2(
    shape: List = None,
    im: npt.ArrayLike = None,
    r: int = 5,
    clearance: int = 0,
    protrusion: int = 0,
    axis: int = 0,
    edges: Literal['contained', 'extended'] = 'contained',
    maxiter: int = 1000,
    phi: float = 1.0,
    seed: float = None,
    smooth: bool = True,
    value: int = 1,
) -> np.ndarray:
    r"""
    This is an alternative implementation of random_spheres that uses the same
    machinery as the pseudo packing generators.  It is not as fast as the original
    though.
    """

    if seed is not None:
        _set_seed(seed)  # Initialize rng so numba sees it
        np.random.seed(seed)  # Also initialize numpys rng

    if im is None:  # If shape is given instead of im
        im = np.zeros(shape, dtype=bool)

    im = np.swapaxes(im, 0, axis)  # Move "axis" to x position for processing

    if smooth:  # Smooth balls are 1 pixel smaller, so increase r
        r = r + 1

    mask = im == 0  # Find mask of valid points
    if protrusion > 0:  # Dilate mask
        dt = edt(~mask)
        mask = dt <= protrusion
    elif protrusion < 0:  # Erode mask
        dt = edt(mask)
        mask = dt >= abs(protrusion)

    # Deal with edge mode
    if edges == 'contained':
        border = get_border(im.shape, thickness=1, mode='faces')
        mask[border] = False

    # Generate mask of valid insertion points
    mask = edt(mask > 0) > r

    # Initialize the queue
    tmp = np.arange(mask.size)[mask.flatten()]
    inds = np.vstack(np.unravel_index(tmp, im.shape)).T
    order = np.random.permutation(np.arange(len(tmp)))
    q = inds[order, :]

    # Compute maxiter
    if phi < 1.0:
        Vsph = 4/3*np.pi*(r**3) if im.ndim == 3 else np.pi*(r**2)
        Vbulk = np.prod(im.shape)
        maxiter = min(int(np.round(phi*Vbulk/Vsph)), maxiter)

    # Finally run it
    im_new = np.zeros_like(im, dtype=bool)
    im_new, count = _do_packing(im_new, mask, q, r, True, clearance, smooth, maxiter)
    logger.debug(f'A total of {count} spheres were added')
    im_new = np.swapaxes(im_new, 0, axis)
    im = np.copy(im).astype(type(value))
    im[im_new] = value
    return im


[docs] def pseudo_gravity_packing( shape: List = None, im: npt.ArrayLike = None, r: int = 5, clearance: int = 0, protrusion: int = 0, axis: int = 0, edges: Literal['contained', 'extended'] = 'contained', maxiter: int = 1000, phi: float = 1.0, seed: int = None, smooth: bool = True, value: int = 1, ) -> np.ndarray: r""" Iteratively inserts spheres at the lowest accessible point in an image, mimicking a gravity packing. Parameters ---------- shape : list The shape of the image to create. This is equivalent to passing an array of `False` values of the desired size to `im`. im : ndarray Image with `False` indicating the voxels where spheres should be inserted. This can be used to insert spheres into an image that already has some features (e.g. half filled with larger spheres, or a cylindrical plug). r : int The radius of the spheres to be added clearance : int (default is 0) The amount space to add between neighboring spheres. The value can be negative for overlapping spheres, but ``abs(clearance) > r``. protrusion : int (optional, default=0) The amount that spheres are allowed to protrude beyond the active phase. A negative number will create clearance between spheres and the background. axis : int (default is 0) The axis along which gravity acts, directed from the end (-1) towards the start (0). phi : float (default is 1.0) The "solid volume fraction" of spheres to add (considering spheres as solid). This is used to calculate the discrete number of spheres, *N*, required based on the total volume of the image. If *N* is less than `maxiter` then `maxiter` will be set to *N*. Note that this number is not quite accurate when the `edges='extended'` since it's not possible to know how much of the sphere will be cutoff by the edge. maxiter : int (default is 1000) The maximum number of spheres to add. This places a hard limit on the number of spheres even if `phi` is specified. edges : string (default is 'contained') Controls how spheres at the edges of the image are handled. Options are: ============ ================================================================ edges description ============ ================================================================ 'contained' Spheres are all completely within the image 'extended' Spheres are allowed to extend beyond the edge of the image. In this mode the volume fraction will be less that requested since some spheres extend beyond the image, but their entire volume is counted as added for computational efficiency. ============ ================================================================ seed : int, optional, default = `None` The seed to supply to the random number generator. Because this function uses ``numba`` for speed, calling the normal ``numpy.random.seed(<seed>)`` has no effect. To get a repeatable image, the seed must be passed to the function so it can be initialized the way ``numba`` requires. The default is ``None``, which means each call will produce a new realization. smooth : bool, default = `True` Controls whether or not the spheres have the small pip each face. value : int, default = 1 The value of insert for the spheres. The default is 1, which puts holes into the background. Values other than 1 make it easy to add spheres repeatedly and identify which were added on each step. Returns ------- spheres : ndarray An image the same size as `im` with spheres indicated by `value`. The spheres are only inserted at locations that are accessible from the top of the image. Examples -------- `Click here <https://porespy.org/examples/generators/reference/pseudo_gravity_packing.html>`_ to view online example. """ logger.debug(f'Adding spheres of radius {r}') if seed is not None: # Initialize rng so numba sees it _set_seed(seed) np.random.seed(seed) if im is None: # If shape was given, generate empty im im = np.zeros(shape, dtype=bool) im = np.swapaxes(im, 0, axis) # Move specified axis to 0 position if smooth: # If smooth spheres are used, increase r to compensate r = r + 1 # Shrink or grow mask to allow for clearance mask = im == 0 # Find mask of valid points if protrusion > 0: # Dilate mask dt = edt(~mask) mask = dt <= protrusion elif protrusion < 0: # Erode mask dt = edt(mask) mask = dt >= abs(protrusion) # Deal with edges if edges == 'contained': im_padded = np.pad(mask, pad_width=1, mode='constant', constant_values=False) if smooth: mask = unpad(edt(im_padded) >= r, 1) else: mask = unpad(edt(im_padded) > r, 1) else: mask = edt(mask) > r # Finalize the mask of valid insertion points inlets = np.zeros_like(im) inlets[-r:, ...] = True s = ball(1) if im.ndim == 3 else disk(1) mask = trim_disconnected_blobs(im=mask, inlets=inlets, strel=s) # Generate elevation values to initialize queue from porespy.generators import ramp tmp = np.arange(im.size)[mask.flatten()] inds = np.vstack(np.unravel_index(tmp, im.shape)).T vals = ramp(im.shape, inlet=0, outlet=im.shape[0], axis=0)*mask vals = vals.flatten()[mask.flatten()] order = _randomized_argsort(inds, vals) q = inds[order, :] # Compute maxiter if phi < 1.0: Vsph = 4/3*np.pi*(r**3) if im.ndim == 3 else np.pi*(r**2) Vbulk = np.prod(im.shape) maxiter = min(int(np.round(phi*Vbulk/Vsph)), maxiter) # Finally insert spheres im_new = np.zeros_like(im, dtype=bool) im_new, count = _do_packing(im_new, mask, q, r, True, clearance, smooth, maxiter) logger.debug(f'A total of {count} spheres were added') im = np.copy(im).astype(type(value)) im[im_new] = value im = np.swapaxes(im, 0, axis) return im
[docs] def pseudo_electrostatic_packing( shape: List = None, im: npt.ArrayLike = None, r: int = 5, sites=None, clearance: int = 0, protrusion: int = 0, edges: Literal['extended', 'contained'] = 'extended', phi: float = 1.0, maxiter: int = 1000, seed: int = None, smooth: bool = True, compactness: float = 1.0, value: int = 1, ): r""" Iterativley inserts spheres as close to the given sites as possible. Parameters ---------- shape : list The shape of the image to create. This is equivalent to passing an array of `False` values of the desired size to `im`. im : ndarray Image with `False` indicating the voxels where spheres should be inserted. This can be used to insert spheres into an image that already has some features (e.g. half filled with larger spheres, or a cylindrical plug). r : int Radius of spheres to insert. sites : ndarray (optional) An image with ``True`` values indicating the electrostatic attraction points. If this is not given then the peaks in the distance transform of `im` are used, which corresponds to the center of the image for a blank input. clearance : int (optional, default=0) The amount of space to put between each sphere. Negative values are acceptable to create overlaps, but ``abs(clearance) < r``. protrusion : int (optional, default=0) The amount that spheres are allowed to protrude beyond the active phase. A negative number will create clearance between spheres and the background. maxiter : int (optional, default=1000) The maximum number of spheres to insert. phi : float (default is 1.0) The "solid volume fraction" of spheres to add (considering spheres as solid). This is used to calculate the discrete number of spheres, *N*, required based on the total volume of the image. If *N* is less than `maxiter` then `maxiter` will be set to *N*. Note that this number is not quite accurate when the `edges='extended'` since it's not possible to know how much of the sphere will be cutoff by the edge. edges : string (default is 'contained') Controls how spheres at the edges of the image are handled. Options are: ============ ================================================================ edges description ============ ================================================================ 'contained' Spheres are all completely within the image 'extended' Spheres are allowed to extend beyond the edge of the image. In this mode the volume fraction will be less that requested since some spheres extend beyond the image, but their entire volume is counted as added for computational efficiency. ============ ================================================================ seed : int, optional, default = `None` The seed to supply to the random number generator. Because this function uses ``numba`` for speed, calling the normal ``numpy.random.seed(<seed>)`` has no effect. To get a repeatable image, the seed must be passed to the function so it can be initialized the way ``numba`` requires. The default is ``None``, which means each call will produce a new realization. compactness : float Controls how tightly the spheres are grouped together. A value of 1.0 (default) results in the tighest possible grouping while values < 1.0 give more loosely or imperfectly packed spheres. value : int, default = 1 The value of insert for the spheres. The default is 1, which puts holes into to the background. Values other than 1 (Foreground) make it easy to add spheres repeated and identify which were added on each step. Returns ------- im : ndarray An image with inserted spheres indicated by ``True`` Examples -------- `Click here <https://porespy.org/examples/generators/reference/pseudo_electrostatic_packing.html>`_ to view online example. """ if seed is not None: # Initialize rng so numba sees it _set_seed(seed) np.random.seed(seed) if im is None: # If shape was given, generate empty im im = np.zeros(shape, dtype=bool) if smooth: # If smooth spheres are used, increase r to compensate r = r + 1 mask = im == 0 # Find mask of valid points if protrusion > 0: # Dilate mask dt = edt(~mask) mask = dt <= protrusion elif protrusion < 0: # Erode mask dt = edt(mask) mask = dt >= abs(protrusion) if edges == 'contained': borders = get_border(mask.shape, thickness=1, mode='faces') mask[borders] = 0 if sites is None: dt = edt(mask) dt = spim.gaussian_filter(dt, sigma=0.5) strel = ps_round(r, ndim=im.ndim, smooth=True) sites = (spim.maximum_filter(dt, footprint=strel) == dt)*(mask > 0) if np.any(dt == np.inf) or np.all(dt == dt[0]): # In case above method failed. sites = np.zeros_like(im) inds = tuple((np.array(im.shape)/2).astype(int)) sites[inds] = True dt2 = edt(~sites) # Where spheres are attracted to dt = edt(mask + sites) # Where spheres can fit mask = mask * (dt2 > r) * (dt > r) mask = mask.astype(bool) # Initialize queue tmp = np.arange(im.size)[mask.flatten()] inds = np.vstack(np.unravel_index(tmp, im.shape)).T vals = np.digitize(dt2[mask], bins=np.arange(1, dt2.max(), int(1/compactness))) order = _randomized_argsort(inds, vals) q = inds[order, :] # Compute maxiter if phi < 1.0: Vsph = 4/3*np.pi*(r**3) if im.ndim == 3 else np.pi*(r**2) Vbulk = np.prod(im.shape) maxiter = min(int(np.round(phi*Vbulk/Vsph)), maxiter) # Finally run it im_new = np.zeros_like(im, dtype=bool) im_new, count = _do_packing(im_new, mask, q, r, True, clearance, smooth, maxiter) logger.debug(f'A total of {count} spheres were added') im = np.copy(im).astype(type(value)) im[im_new] = value return im
def _randomized_argsort(inds, vals): r""" A utility function to take a sorted list and randomize the order of the elements with the same value. So if the list is [21, 44, 16, 21, 44, 37], np.argsort would return [2, 0, 3, 5, 1, 4], this function will return and alternative set of args [2, 0|3, 3|0, 1|5, 5|1, 4]. """ order = np.argsort(vals) _, counts = np.unique(vals[order], return_counts=True) counts = np.cumsum(np.hstack(([0], counts))) for i in range(len(counts)-1): orig_order = order[counts[i]:counts[i+1]] new_order = np.random.permutation(orig_order) order[counts[i]:counts[i+1]] = new_order return order # @njit def _do_packing(im, mask, q, r, value, clearance, smooth, maxiter): count = 0 for i in range(len(q)): cen = tuple(q[i, :]) if mask[cen]: count += 1 im = _insert_disk_at_point( im=im, coords=cen, r=r, v=value, overwrite=True, smooth=smooth, ) mask = _insert_disk_at_point( im=mask, coords=cen, r=2*r + clearance, v=False, overwrite=True, smooth=smooth, ) if count >= maxiter: break return im, count if __name__ == "__main__": import matplotlib.pyplot as plt import scipy.ndimage as spim import porespy as ps shape = [200, 200] # %% Electrostatic packing fig, ax = plt.subplots(2, 2) if 1: sites = np.zeros([300, 300], dtype=bool) sites[150, 150] = True im = ps.generators.pseudo_electrostatic_packing( shape=[300, 300], r=5, # sites=sites, # maxiter=1000, edges='extended', # clearance=0, # smooth=True, compactness=1.0, ) ax[0][0].imshow(im) if 1: blobs = ps.generators.blobs([400, 400], porosity=0.75, seed=0) im = ps.generators.pseudo_electrostatic_packing( im=~blobs, r=10, clearance=0, protrusion=0, edges='contained', seed=0, phi=.3, smooth=True, value=2, ) im2 = ps.generators.pseudo_electrostatic_packing( im=im, sites=im == 2, r=5, clearance=1, protrusion=0, edges='extended', seed=0, phi=1.0, smooth=True, value=3, ) ax[0][1].imshow(im2 + (im == 2)*2, origin='lower') # %% Gravity packing if 1: im = pseudo_gravity_packing( shape=shape, r=16, clearance=0, edges='contained', phi=.2, smooth=False, value=2, ) im = pseudo_gravity_packing( im=im, r=8, clearance=2, protrusion=-2, edges='extended', seed=0, phi=0.25, maxiter=1000, smooth=False, value=3, ) im = pseudo_gravity_packing( im=im, r=12, clearance=4, protrusion=-4, edges='contained', seed=0, smooth=True, value=4, ) ax[1][0].imshow(im, origin='lower') # %% Random packing if 1: im = _random_spheres2( shape=shape, r=16, clearance=5, edges='extended', seed=0, phi=.25, smooth=False, value=3, ) im = _random_spheres2( im=im, r=8, clearance=5, protrusion=5, edges='contained', seed=0, phi=0.1, maxiter=1000, smooth=False, value=2, ) im = _random_spheres2( im=im, r=12, clearance=5, protrusion=5, edges='contained', seed=0, smooth=True, value=1 ) ax[1][1].imshow(im, origin='lower')