Source code for porespy.io._funcs

import os
import subprocess

import numpy as np
import scipy.ndimage as nd
import skimage.measure as ms
from skimage.morphology import ball

from porespy.filters import reduce_peaks
from porespy.networks import generate_voxel_image
from porespy.tools import sanitize_filename

try:
    from pyedt import edt
except ModuleNotFoundError:
    from edt import edt


[docs] def dict_to_vtk(data, filename, voxel_size=1, origin=(0, 0, 0)): r""" Accepts multiple images as a dictionary and compiles them into a vtk file Parameters ---------- data : dict A dictionary of *key: value* pairs, where the *key* is the name of the scalar property stored in each voxel of the array stored in the corresponding *value*. path : string Path to output file voxel_size : int The side length of the voxels (voxels are cubic) origin : float data origin (according to selected voxel size) Notes ----- Outputs a vtk, vtp or vti file that can opened in ParaView Examples -------- `Click here <https://porespy.org/examples/io/reference/dict_to_vtk.html>`_ to view online example. """ try: from pyevtk.hl import imageToVTK except ModuleNotFoundError: msg = 'The pyevtk package can be installed with pip install pyevtk' raise ModuleNotFoundError(msg) vs = voxel_size for entry in data: if data[entry].dtype == bool: data[entry] = data[entry].astype(np.int8) if data[entry].flags["C_CONTIGUOUS"]: data[entry] = np.ascontiguousarray(data[entry]) imageToVTK(filename, cellData=data, spacing=(vs, vs, vs), origin=origin)
[docs] def to_vtk(im, filename, divide=False, downsample=False, voxel_size=1, vox=False): r""" Converts an array to a vtk file. Parameters ---------- im : 3D image The image of the porous material path : string Path to output file divide : bool vtk files can get very large, this option allows you for two output files, divided at z = half. This allows for large data sets to be imaged without loss of information downsample : bool very large images acan be downsampled to half the size in each dimension, this doubles the effective voxel size voxel_size : int The side length of the voxels (voxels are cubic) vox : bool For an image that is binary (1's and 0's) this reduces the file size by using int8 format (can also be used to reduce file size when accuracy is not necessary ie: just visulization) Notes ----- Outputs a vtk, vtp or vti file that can opened in paraview Examples -------- `Click here <https://porespy.org/examples/io/reference/to_vtk.html>`_ to view online example. """ try: from pyevtk.hl import imageToVTK except ModuleNotFoundError: msg = 'The pyevtk package can be installed with pip install pyevtk' raise ModuleNotFoundError(msg) if len(im.shape) == 2: im = im[:, :, np.newaxis] if im.dtype == bool: vox = True if vox: im = im.astype(np.int8) vs = voxel_size if divide: split = np.round(im.shape[2] / 2).astype(np.int) im1 = im[:, :, 0:split] im2 = im[:, :, split:] imageToVTK(f"{filename}_1", cellData={"im": np.ascontiguousarray(im1)}, spacing=(vs, vs, vs),) imageToVTK(f"{filename}_2", origin=(0.0, 0.0, split * vs), cellData={"im": np.ascontiguousarray(im2)}, spacing=(vs, vs, vs),) elif downsample: im = nd.interpolation.zoom(im, zoom=0.5, order=0, mode="reflect") imageToVTK(filename, cellData={"im": np.ascontiguousarray(im)}, spacing=(2 * vs, 2 * vs, 2 * vs),) else: imageToVTK(filename, cellData={"im": np.ascontiguousarray(im)}, spacing=(vs, vs, vs))
[docs] def to_palabos(im, filename, solid=0): r""" Converts an ndarray image to a text file that Palabos can read in as a geometry for Lattice Boltzmann simulations. Uses a Euclidean distance transform to identify solid voxels neighboring fluid voxels and labels them as the interface. Parameters ---------- im : ndarray The image of the porous material filename : string Path to output file solid : int The value of the solid voxels in the image used to convert image to binary with all other voxels assumed to be fluid. Notes ----- File produced contains 3 values: 2 = Solid, 1 = Interface, 0 = Pore Palabos will run the simulation applying the specified pressure drop from x = 0 to x = -1. Examples -------- `Click here <https://porespy.org/examples/io/reference/to_palabos.html>`_ to view online example. """ # Create binary image for fluid and solid phases bin_im = im == solid # Transform to integer for distance transform bin_im = bin_im.astype(int) # Distance Transform computes Euclidean distance in lattice units to # Nearest fluid for every solid voxel dt = edt(bin_im) dt[dt > 2] = 2 dt[(dt > 0) * (dt <= 2)] = 1 dt = np.sqrt(dt).astype(int) # Write out data with open(filename, "w") as f: out_data = dt.flatten().tolist() f.write("\n".join(map(repr, out_data)))
[docs] def openpnm_to_im( network, pore_shape="sphere", throat_shape="cylinder", max_dim=None, rtol=0.1, ): r""" Generates voxel image from an OpenPNM network object. Parameters ---------- network : OpenPNM GenericNetwork Network from which voxel image is to be generated pore_shape : str Shape of pores in the network, valid choices are "sphere", "cube" throat_shape : str Shape of throats in the network, valid choices are "cylinder", "cuboid" max_dim : int Number of voxels in the largest dimension of the network rtol : float Stopping criteria for finding the smallest voxel image such that further increasing the number of voxels in each dimension by 25% would improve the predicted porosity of the image by less that ``rtol`` Returns ------- im : ndarray Voxelated image corresponding to the given pore network model Notes ----- (1) The generated voxelated image is labeled with 0s, 1s and 2s signifying solid phase, pores, and throats respectively. (2) If max_dim is not provided, the method calculates it such that the further increasing it doesn't change porosity by much. """ return generate_voxel_image( network, pore_shape=pore_shape, throat_shape=throat_shape, max_dim=max_dim, rtol=rtol, )
[docs] def to_stl(im, filename, divide=False, downsample=False, voxel_size=1, vox=False): r""" Converts an array to an STL file. Parameters ---------- im : 3D image The image of the porous material path : string Path to output file divide : bool vtk files can get very large, this option allows you for two output files, divided at z = half. This allows for large data sets to be imaged without loss of information downsample : bool very large images acan be downsampled to half the size in each dimension, this doubles the effective voxel size voxel_size : int The side length of the voxels (voxels are cubic) vox : bool For an image that is binary (1's and 0's) this reduces the file size by using int8 format (can also be used to reduce file size when accuracy is not necessary ie: just visulization) Notes ----- Outputs an STL file that can opened in Paraview Examples -------- `Click here <https://porespy.org/examples/io/reference/to_stl.html>`_ to view online example. """ filename = sanitize_filename(filename, ext="stl", exclude_ext=True) if len(im.shape) == 2: im = im[:, :, np.newaxis] if im.dtype == bool: vox = True if vox: im = im.astype(np.int8) vs = voxel_size if divide: split = np.round(im.shape[2] / 2).astype(np.int) im1 = im[:, :, 0:split] im2 = im[:, :, split:] _save_stl(im1, vs, f"{filename}_1") _save_stl(im2, vs, f"{filename}_2") elif downsample: im = nd.interpolation.zoom(im, zoom=0.5, order=0, mode="reflect") _save_stl(im, vs * 2, filename) else: _save_stl(im, vs, filename)
def _save_stl(im, vs, filename): r""" Helper method to convert an array to an STL file. Parameters ---------- im : 3D image The image of the porous material voxel_size : int The side length of the voxels (voxels are cubic) filename : string Path to output file """ try: from stl import mesh except ModuleNotFoundError: msg = 'numpy-stl can be installed with pip install numpy-stl' raise ModuleNotFoundError(msg) im = np.pad(im, pad_width=10, mode="constant", constant_values=True) vertices, faces, norms, values = ms.marching_cubes(im) vertices *= vs # Export the STL file export = mesh.Mesh(np.zeros(faces.shape[0], dtype=mesh.Mesh.dtype)) for i, f in enumerate(faces): for j in range(3): export.vectors[i][j] = vertices[f[j], :] export.save(f"{filename}.stl")
[docs] def to_paraview(im, filename, phase=2): r""" Converts an array to a paraview state file. Parameters ---------- im : ndarray The image of the porous material. filename : str Path to output file. phase : str The desired phase of output image where phase = 0 represent the pore phase, phase = 1 represents the solid phase, and phase= 2 is the whole domain. The default value is 2. Notes ----- Outputs an pvsm file that can opened in Paraview. Examples -------- `Click here <https://porespy.org/examples/io/reference/to_paraview.html>`_ to view online example. """ try: import imageio except ModuleNotFoundError: msg = "The imageio package can be installed with pip install imageio" raise ModuleNotFoundError(msg) try: import paraview.simple except ModuleNotFoundError: msg = ("The paraview python bindings must be installed using conda" " install -c conda-forge paraview, however this may require" " using a virtualenv since conflicts with other packages are" " common. This is why it is not explicitly included as a" " dependency in porespy.") raise ModuleNotFoundError(msg) data = im.astype("uint8") file = os.path.splitext(filename)[0] path = file + ".tiff" if len(im.shape) == 2: imageio.imwrite(path, np.array(data)) view = "Slice" zshape = 0 xshape = im.shape[1] yshape = im.shape[0] elif len(im.shape) == 3: imageio.volsave(path, np.array(data)) view = "Volume" zshape = im.shape[0] xshape = im.shape[2] yshape = im.shape[1] maxshape = max(xshape, yshape) paraview.simple._DisableFirstRenderCameraReset() # Create a new 'TIFF Series Reader' dtiff = paraview.simple.TIFFSeriesReader(FileNames=[path]) # Get active view renderView1 = paraview.simple.GetActiveViewOrCreate("RenderView") # Uncomment following to set a specific view size # renderView1.ViewSize = [1612, 552] # Get layout _ = paraview.simple.GetLayout() # Show data in view dtiffDisplay = paraview.simple.Show(dtiff, renderView1, "UniformGridRepresentation") # Get color transfer function/color map for 'TiffScalars' tiffScalarsLUT = paraview.simple.GetColorTransferFunction("TiffScalars") # Get opacity transfer function/opacity map for 'TiffScalars' tiffScalarsPWF = paraview.simple.GetOpacityTransferFunction("TiffScalars") # Trace defaults for the display properties. dtiffDisplay.Representation = view dtiffDisplay.ColorArrayName = ["POINTS", "Tiff Scalars"] dtiffDisplay.LookupTable = tiffScalarsLUT dtiffDisplay.OSPRayScaleArray = "Tiff Scalars" dtiffDisplay.OSPRayScaleFunction = "PiecewiseFunction" dtiffDisplay.SelectOrientationVectors = "None" dtiffDisplay.ScaleFactor = maxshape / 10 - 0.1 dtiffDisplay.SelectScaleArray = "Tiff Scalars" dtiffDisplay.GlyphType = "Arrow" dtiffDisplay.GlyphTableIndexArray = "Tiff Scalars" dtiffDisplay.GaussianRadius = maxshape / 200 - 0.005 dtiffDisplay.SetScaleArray = ["POINTS", "Tiff Scalars"] dtiffDisplay.ScaleTransferFunction = "PiecewiseFunction" dtiffDisplay.OpacityArray = ["POINTS", "Tiff Scalars"] dtiffDisplay.OpacityTransferFunction = "PiecewiseFunction" dtiffDisplay.DataAxesGrid = "GridAxesRepresentation" dtiffDisplay.PolarAxes = "PolarAxesRepresentation" dtiffDisplay.ScalarOpacityUnitDistance = 8.256564094912507 dtiffDisplay.ScalarOpacityFunction = tiffScalarsPWF dtiffDisplay.IsosurfaceValues = [0.5] dtiffDisplay.SliceFunction = "Plane" shape = np.array([xshape, yshape, zshape]) # Init the 'Plane' selected for 'SliceFunction' dtiffDisplay.SliceFunction.Origin = [xi / 2 - 0.5 for xi in shape] # Reset view to fit data renderView1.ResetCamera() # Changing interaction mode based on data extents # renderView1.InteractionMode = mode renderView1.CameraPosition = [ xshape / 2 - 0.5, yshape / 2 - 0.5, 4.6 * np.sqrt(np.sum(shape / 2 - 0.5)**2) ] renderView1.CameraFocalPoint = [xi / 2 - 0.5 for xi in shape] # Get the material library _ = paraview.simple.GetMaterialLibrary() # Show color bar/color legend dtiffDisplay.SetScalarBarVisibility(renderView1, True) # Update the view to ensure updated data information renderView1.Update() # Saving camera placements for all active views # Current camera placement for renderView1 # renderView1.InteractionMode = mode renderView1.CameraPosition = [ xshape / 2 - 0.5, yshape / 2 - 0.5, 4.6 * np.sqrt(np.sum(shape / 2 - 0.5)**2) ] renderView1.CameraFocalPoint = [xi / 2 - 0.5 for xi in shape] renderView1.CameraParallelScale = np.sqrt(np.sum(shape / 2 - 0.5)**2) # Uncomment the following to render all views # RenderAllViews() # Alternatively, if you want to write images, you can use SaveScreenshot(...). threshold1 = paraview.simple.Threshold(Input=dtiff) threshold1.Scalars = ["POINTS", "Tiff Scalars"] if phase == 0: threshold_range = [0.5, 1] elif phase == 1: threshold_range = [0, 0.5] else: threshold_range = [0, 1] threshold1.ThresholdRange = threshold_range # Show data in view _ = paraview.simple.Show( threshold1, renderView1, "UnstructuredGridRepresentation" ) # Hide data in view paraview.simple.Hide(dtiff, renderView1) paraview.simple.SaveState(file + ".pvsm")
[docs] def open_paraview(filename=None, im=None, **kwargs): r""" Open a paraview state file or image directly in paraview. Parameters ---------- filename : str Path to input state file. im : ndarray An image to open directly. If no filename given, then this image is sent to ``to_paraview`` and a state file is created with a random name. Any additional keyword arguments are sent to ``to_paraview``. Examples -------- `Click here <https://porespy.org/examples/io/reference/open_paraview.html>`_ to view online example. """ if filename is None: from datetime import datetime now = datetime.now() filename = now.strftime("%d-%m-%Y_%H-%M-%S") to_paraview(im=im, filename=filename, **kwargs) file = os.path.splitext(filename)[0] statefile = file + ".pvsm" # paraview_path = "paraview.exe" paraview_path = "paraview" subprocess.Popen([paraview_path, statefile])
[docs] def spheres_to_comsol(filename, im=None, centers=None, radii=None): r""" Exports a sphere pack into a Comsol geometry file. An image containing spheres can be specified. Alternatively as list of ``centers`` and ``radii`` can be given if known. Parameters ---------- filename : string or path object Location and namge to output file im : ndarray (optional) A voxel image containing spheres indicated by non-zeros values. Spheres can be generated using a variety of methods and can overlap. The sphere centers and radii are found as the peaks in the distance transform. If ``im`` is not supplied, then ``centers`` and ``radii`` must be given. centers : array_like (optional) An array (Ns, 3) of the spheres centers where Ns is the number of spheres. This must be specified if ``im`` is not suppplied. radii : array_like (optional) An Ns length array of the spheres's. This must be specified if ``im`` is not suppplied. Notes ----- If ``im`` is given then some image analysis is performed to find sphere centers so it may not perfectly represent the spheres in the original image. This is especially true for overlapping sphere and spheres extending beyond the edge of the image. Examples -------- `Click here <https://porespy.org/examples/io/reference/spheres_to_comsol.html>`_ to view online example. """ from ._comsol import _save_to_comsol if im is not None: if im.ndim != 3: raise Exception('Image must be 3D.') dt = edt(im > 0) dt2 = nd.gaussian_filter(dt, sigma=0.1) peaks = (im > 0)*(nd.maximum_filter(dt2, footprint=ball(3)) == dt) peaks = reduce_peaks(peaks) centers = np.vstack(np.where(peaks)).T radii = dt[tuple(centers.T)].astype(int) _save_to_comsol(filename, centers, radii)