porespy.networks#

Contains functions for analysing images as pore networks.

Functions#

add_boundary_regions(regions[, pad_width])

Add boundary regions on specified faces of an image

create_model()

Builds a ResNet50 model for predicting diffusive size factors.

diffusive_size_factor_AI(regions, throat_conns, model, ...)

diffusive_size_factor_DNS(regions, throat_conns[, ...])

Calculates the diffusive size factor of pore to pore regions in

find_conns(im)

find_junctions(sk)

Finds all junctions and endpoints in a skeleton.

find_throat_junctions(im, sk, juncs, throats[, dt, ...])

Finds local peaks on the throat segments of a skeleton large enough to be

generate_voxel_image(network[, pore_shape, ...])

Generate a voxel image from an OpenPNM network object

get_throat_area(im, sk, throats[, voxel_size, ...])

This function returns the cross-sectional acrea of throats.

juncs_to_pore_centers(juncs, dt)

Finds pore centers from an image of junctions. To do this, clusters of

junctions_to_network(sk, juncs, throats, dt, throat_area)

Assemble a dictionary object containing essential topological and

label_boundaries(network[, labels, tol])

Create boundary pore labels based on proximity to axis extrema

label_phases(network[, alias])

Create pore and throat labels based on 'pore.phase' values

magnet(im[, sk, parallel_kw, surface, voxel_size, s, ...])

Perform a Medial Axis Guided Network ExtracTion (MAGNET) on an image of

map_to_regions(regions, values)

Maps pore values from a network onto the image from which it was extracted

merge_nearby_juncs(sk, juncs[, dt])

Merges nearby junctions found in the skeleton

partition_skeleton(sk, juncs, dt)

Divides skeleton into pore and throat voxels given junctions

regions_to_network(regions[, phases, voxel_size, ...])

Analyzes an image that has been partitioned into pore regions and extracts

regions_to_network_parallel(regions[, phases, ...])

Analyzes an image that has been partitioned into pore regions and extracts

skeleton(im[, surface, parallel_kw])

Takes the skeleton of an image. This function ensures that no shells are

skeleton_parallel(im[, parallel_kw])

Performs skimage.morphology.skeleton_3d in parallel using dask

snow2(phases[, phase_alias, boundary_width, accuracy, ...])

Applies the SNOW algorithm to each phase indicated in phases.