seq_to_satn#

Converts values of invasion sequence into a saturation map

import numpy as np
import porespy as ps
import matplotlib.pyplot as plt
from edt import edt
ps.visualization.set_mpl_style()
[17:44:46] ERROR    PARDISO solver not installed, run `pip install pypardiso`. Otherwise,          _workspace.py:56
                    simulations will be slow. Apple M chips not supported.                                         

The arguments and default values for this function are:

import inspect
inspect.signature(ps.filters.seq_to_satn)
<Signature (seq, im=None, mode='drainage')>

Generate an image containing invasion sizes using the porosimetry function:

np.random.seed(0)
im = ps.generators.blobs([200, 200], porosity=0.5)
inv = ps.filters.porosimetry(im)

Then convert the sizes to sequence values:

seq = ps.filters.size_to_seq(inv, im=im)

seq#

satn = ps.filters.seq_to_satn(seq=seq)
fig, ax = plt.subplots(1, 2, figsize=[12, 6])
ax[0].imshow(seq/im, origin='lower', interpolation='none')
ax[0].set_title('Invasion map by sequence')
ax[0].axis(False)
ax[1].imshow(satn/im, origin='lower', interpolation='none')
ax[1].set_title('Invasion map by saturation')
ax[1].axis(False);
../../../_images/5c4d4d1a421e7c93c9a661c5bfec3cdb27be1551bb07edd77735837b55269e33.png

The saturation map makes it very easy to obtain a desired fluid configuration just by applying a threhold:

fig, ax = plt.subplots(1, 2, figsize=[12, 6])

s = 0.3
ax[0].imshow((satn < s)*(satn > 0)/im, origin='lower', interpolation='none')
ax[0].set_title(f'saturation = {s}')
ax[0].axis(False)

s = 0.6
ax[1].imshow((satn < s)*(satn > 0)/im, origin='lower', interpolation='none')
ax[1].set_title(f'saturation = {s}')
ax[1].axis(False);
../../../_images/3d5721b9afbadfa3ce9cf5caa917b2b394f52a14976cc8a767b70989b517bc19.png