pc_curve
¶
This single method can convert either (a) images containing invasion size or (b) invasion pressure results, such as those produced by porosimetry
and drainage
, respectively.
import porespy as ps
import numpy as np
import matplotlib.pyplot as plt
[19:12:55] ERROR PARDISO solver not installed, run `pip install pypardiso`. Otherwise, _workspace.py:56 simulations will be slow. Apple M chips not supported.
Generate an image and apply the drainage
function:
np.random.seed(0)
im = ps.generators.blobs(shape=[200, 200], porosity=0.6)
pc = ps.filters.capillary_transform(im, sigma=0.01, theta=180, voxel_size=1e-5)
drn = ps.simulations.drainage(im, return_sizes=True)
pc
¶
The function can accept an image of invasion pressures, such as that produced by drainage
or qbip
:
pc_curve = ps.metrics.pc_curve(im=im, pc=drn.im_pc)
The function returns an object with pc
and snwp
as attributes which can be plotted directly:
plt.plot(pc_curve.pc, pc_curve.snwp, 'b-o')
plt.xlabel('Capillary Pressure [Pa]')
plt.ylabel('Non-wetting Phase Saturation');

Alternatively, if the size map is available but not the capillary pressure map, then size_to_pc
can be used first:
pc = ps.filters.size_to_pc(im=im, size=drn.im_size, sigma=0.01, theta=180, voxel_size=1e-5)
data = ps.metrics.pc_curve(im=im, pc=pc)
Matplotlib can be used to plot the curve:
plt.plot(data.pc, data.snwp, 'r-o')
plt.xlabel('Capillary Pressure [Pa]')
plt.ylabel('Non-wetting Phase Saturation');
