distance_transform_lin#

A variant of the standard distance transform where the distances are computed along a give axis rather than radially.

import numpy as np
import porespy as ps
import scipy.ndimage as spim
import matplotlib.pyplot as plt

ps.visualization.set_mpl_style()

axis#

The axis along which the distances should be computed

fig, ax = plt.subplots(1, 2, figsize=[12, 6])

im = ps.generators.blobs(shape=[500, 500], porosity=0.7)

axis = 0
dt = ps.filters.distance_transform_lin(im, axis=axis)

ax[0].imshow(dt / im)
ax[0].axis(False)
ax[0].set_title(f"axis = {axis}")

axis = 1
dt = ps.filters.distance_transform_lin(im, axis=axis)

ax[1].imshow(dt / im)
ax[1].axis(False)
ax[1].set_title(f"axis = {axis}");
../../../_images/01e718910440c73e48f02383efa99745b58e28e104c00637b32d6687eae329f0.png

mode#

Whether the distances are comptuted from the start to end, end to start, or both.

fig, ax = plt.subplots(1, 3, figsize=[15, 5])

im = ps.generators.blobs(shape=[500, 500], porosity=0.7)

mode = "forward"
dt = ps.filters.distance_transform_lin(im, mode=mode)

ax[0].imshow(dt / im)
ax[0].axis(False)
ax[0].set_title(f"mode = {mode}")

mode = "reverse"
dt = ps.filters.distance_transform_lin(im, mode=mode)

ax[1].imshow(dt / im)
ax[1].axis(False)
ax[1].set_title(f"mode = {mode}")

mode = "both"
dt = ps.filters.distance_transform_lin(im, mode=mode)

ax[2].imshow(dt / im)
ax[2].axis(False)
ax[2].set_title(f"mode = {mode}");
../../../_images/1d8fc2574f331b376a12869a21deda393610abc5d62000ddc048c9c19f7dd641.png