SNOW network extraction¶
The SNOW algorithm, published in Physical Review E, uses a marker-based watershed segmentation algorithm to partition an image into regions belonging to each pore. The main contribution of the SNOW algorithm is to find a suitable set of initial markers in the image so that the watershed is not over-segmented. SNOW is an acronym for Sub-Network of an Over-segmented Watershed. This code works on both 2D and 3D images. In this example a 2D image will be segmented using the predefined snow
function in PoreSpy.
Start by importing the necessary packages:
import numpy as np
import porespy as ps
import openpnm as op
import matplotlib.pyplot as plt
ps.visualization.set_mpl_style()
np.random.seed(10)
[20:06:45] ERROR PARDISO solver not installed, run `pip install pypardiso`. Otherwise, _workspace.py:56 simulations will be slow. Apple M chips not supported.
Generate an artificial 2D image for illustration purposes:
im = ps.generators.blobs(shape=[400, 400], porosity=0.6, blobiness=2)
fig, ax = plt.subplots(figsize=(4, 4))
ax.imshow(im);
SNOW is composed of a series of filters, but PoreSpy has a single function that applies all the necessary steps:
snow_output = ps.networks.snow2(im, voxel_size=1)
The snow
function returns an object that has a network
attribute. This is a dictionary that is suitable for loading into OpenPNM. The best way to get this into OpenPNM is to use the PoreSpy
IO class. This splits the data into a network and a geometry:
pn = op.io.network_from_porespy(snow_output.network)
As can be seen by printing the network it contains quite a lot of geometric information:
print(pn)
══════════════════════════════════════════════════════════════════════════════
net : <openpnm.network.Network at 0x7fa01dc20e10>
――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――
# Properties Valid Values
――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――
2 throat.conns 283 / 283
3 pore.coords 262 / 262
4 pore.region_label 262 / 262
5 pore.phase 262 / 262
6 throat.phases 283 / 283
7 pore.region_volume 262 / 262
8 pore.equivalent_diameter 262 / 262
9 pore.local_peak 262 / 262
10 pore.global_peak 262 / 262
11 pore.geometric_centroid 262 / 262
12 throat.global_peak 283 / 283
13 pore.inscribed_diameter 262 / 262
14 pore.extended_diameter 262 / 262
15 throat.inscribed_diameter 283 / 283
16 throat.total_length 283 / 283
17 throat.direct_length 283 / 283
18 throat.perimeter 283 / 283
19 pore.volume 262 / 262
20 pore.surface_area 262 / 262
21 throat.cross_sectional_area 283 / 283
22 throat.equivalent_diameter 283 / 283
――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――
# Labels Assigned Locations
――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――
2 pore.all 262
3 throat.all 283
4 pore.boundary 46
5 pore.xmin 12
6 pore.xmax 12
7 pore.ymin 13
8 pore.ymax 9
――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――――
You can also overlay the network on the image natively in porespy
. Note that you need to transpose the image using im.T
, since imshow
uses matrix representation, e.g. a (10, 20)-shaped array is shown as 10 pixels in the y-axis, and 20 pixels in the x-axis.