extract_regions
¶
Import packages¶
import numpy as np
import porespy as ps
import scipy.ndimage as spim
import matplotlib.pyplot as plt
import skimage
ps.visualization.set_mpl_style()
[01:02:41] ERROR PARDISO solver not installed, run `pip install pypardiso`. Otherwise, _workspace.py:56 simulations will be slow. Apple M chips not supported.
Generate image for testing¶
To illustrate this function, we need an image containing many labelled regions. This can obtained by generating some blobs
, then using scipy.label
.
Apply tool¶
In it’s basic form, this function is equivalent to just obtaining a boolean mask like regions == 22
, but it has a few more features including extracting a sub-image that just contains the regions, and also finding multiple regions at once.
reg1 = ps.tools.extract_regions(regions=regions, labels=[22], trim=False)
reg2 = ps.tools.extract_regions(regions=regions, labels=[22], trim=True)
reg3 = ps.tools.extract_regions(regions=regions, labels=[22, 23], trim=True)
fig, ax = plt.subplots(1, 3, figsize=[8, 4])
ax[0].axis(False)
ax[0].imshow(reg1)
ax[1].axis(False)
ax[1].imshow(reg2);
ax[2].axis(False)
ax[2].imshow(reg3);