SNOW partitioning#

The filter is used to partition an image into regions using the SNOW algorithm which stands for the subnetwork of the oversegmented watershed. The steps taken are described in detail in the snow_advanced notebook. We provide a filter function that combines all the steps and it is explored here:

import numpy as np
import porespy as ps
import as cm
import matplotlib.pyplot as plt
from skimage.morphology import binary_dilation
im = ps.generators.overlapping_spheres([500, 500], r=10, porosity=0.5)
fig, ax = plt.subplots()
ax.imshow(im, origin='lower');
snow_out = ps.filters.snow_partitioning(im, r_max=4, sigma=0.4)
Item                      Description
im                        Image of size (500, 500)
dt                        Image of size (500, 500)
peaks                     Image of size (500, 500)
regions                   Image of size (500, 500)
fig, ax = plt.subplots(2, 2, figsize=[8, 8])
ax[0, 0].imshow(, origin='lower')
ax[0, 1].imshow(snow_out.dt, origin='lower')
dt_peak = snow_out.dt.copy()
peaks_dilated = binary_dilation(snow_out.peaks > 0)
dt_peak[peaks_dilated > 0] = np.nan
ax[1, 0].imshow(dt_peak, origin='lower')
ax[1, 1].imshow(, origin='lower')
ax[0, 0].set_title("Binary image");
ax[0, 1].set_title("Distance transform");
ax[1, 0].set_title("Distance transform peaks");
ax[1, 1].set_title("Segmentation");