blobs

blobs is a simple function to generate a test image. It works by generating random noise, applying a guassian blur, renormalizing the result back to a uniform distribution, then thresholding the result to produce a binary image.

import porespy as ps
import matplotlib.pyplot as plt
import numpy as np
[20:02:45] ERROR    PARDISO solver not installed, run `pip install pypardiso`. Otherwise,          _workspace.py:56
                    simulations will be slow. Apple M chips not supported.                                         

shape

Both 2D and 3D images can be generated. Sending a scalar (shape=100) will produce a 3D image of size 100^3.

shape = [200, 200]
im = ps.generators.blobs(shape=shape)
fig, ax = plt.subplots(1, 1, figsize=[4, 4])
ax.imshow(im, origin='lower', interpolation='none')
ax.axis(False);
../../../_images/79653e9706f70bbb4498742d00884404aafe9bab8962a18d1f1db17f006b6477.png

porosity

The fraction of the True to False pores can be set by specifying the porosity. The default is 0.5.

e = 0.75
im = ps.generators.blobs(shape=[500, 500], porosity=e)
fig, ax = plt.subplots(1, 1, figsize=[4, 4])
ax.imshow(im, origin='lower', interpolation='none')
ax.axis(False);
../../../_images/9de62d004604fbba3fb52eefba038e922b6c0b2fb2ac7df12d30f4443b22230c.png

Specifying porosity=None will return a greyscale image which can then be thresholded to get a boolean image. The greyscale value are adjusted to a unifrom distribution:

im = ps.generators.blobs(shape=[500, 500], porosity=None)
fig, ax = plt.subplots(1, 2, figsize=[8, 4])

ax[0].imshow(im, origin='lower', interpolation='none')
ax[0].axis(False)

ax[1].hist(im.flatten(), edgecolor='k');
../../../_images/9c4acff8984775a073304844583c0027c49d7bfc8589ba0c67c30543b9757e3f.png
im = ps.generators.blobs(shape=[500, 500], porosity=None, blobiness=1)
fig, ax = plt.subplots(1, 3, figsize=[12, 4])
ax[0].imshow(im, origin='lower', interpolation='none')
ax[0].axis(False)
ax[1].imshow(im < 0.5, origin='lower', interpolation='none')
ax[1].axis(False)
ax[2].imshow(im < 0.75, origin='lower', interpolation='none')
ax[2].axis(False);
../../../_images/5f69dfa7374bd4224fffab64ec9078b0726a7ada06cd0a2f1d14f10bbfe31862.png

blobiness

The size and anisotropy of the blobs can be changed:

fig, ax = plt.subplots(1, 2, figsize=[8, 4])

im1 = ps.generators.blobs(shape=shape, porosity=e, blobiness=1)
ax[0].imshow(im1, origin='lower', interpolation='none')
ax[0].axis(False)

im2 = ps.generators.blobs(shape=shape, porosity=e, blobiness=2)
ax[1].imshow(im2, origin='lower', interpolation='none')
ax[1].axis(False);
../../../_images/d59cc180f634d700e41bc768cb25765e781481be3811611e43ea4e6ebab35f9e.png
fig, ax = plt.subplots(1, 2, figsize=[8, 4])

im1 = ps.generators.blobs(shape=shape, porosity=e, blobiness=[2, 1])
ax[0].imshow(im1, origin='lower', interpolation='none')
ax[0].axis(False)

im2 = ps.generators.blobs(shape=shape, porosity=e, blobiness=[1, 3])
ax[1].imshow(im2, origin='lower', interpolation='none')
ax[1].axis(False);
../../../_images/094aab0165c952140e8cc483817267b369c61abf0b5d08b3823338f8c6c0fe36.png

Reproducing Images

The random is controlled by numpy’s random number generator so the same image can be produced by setting the seed:

np.random.seed(0)
im1 = ps.generators.blobs(shape=[500, 500], porosity=0.5)
np.random.seed(0)
im2 = ps.generators.blobs(shape=[500, 500], porosity=0.5)
fig, ax = plt.subplots(1, 2, figsize=[8, 4])
ax[0].imshow(im1, origin='lower', interpolation='none')
ax[0].axis(False)
ax[1].imshow(im2, origin='lower', interpolation='none')
ax[1].axis(False);
../../../_images/0988884e645acc8da5c966dc01b92d3c2f4f153ec2c242a302b35723cc1816a1.png