lattice_spheres
¶
Generates a cubic packing of spheres in a specified lattice arrangement.
import matplotlib.pyplot as plt
import porespy as ps
[01:04:24] ERROR PARDISO solver not installed, run `pip install pypardiso`. Otherwise, _workspace.py:56 simulations will be slow. Apple M chips not supported.
import inspect
b = inspect.signature(ps.generators.lattice_spheres)
print(b)
(shape: List, r: int = 5, spacing: int = None, offset: int = None, smooth: bool = True, lattice: Literal['sc', 'tri', 'fcc', 'bcc'] = 'sc')
radius
¶
Controls the size of the spheres.
fig, ax = plt.subplots(1, 2, figsize=[8, 4])
shape = [200, 200]
r=10
im1 = ps.generators.lattice_spheres(shape=shape, r=r)
ax[0].imshow(im1, interpolation='none')
ax[0].axis(False)
ax[0].set_title(f'radius = {r}')
r= 20
im2 = ps.generators.lattice_spheres(shape=shape, r=r)
ax[1].imshow(im2, interpolation='none')
ax[1].axis(False)
ax[1].set_title(f'radius = {r}');
spacing
¶
The center-to-center spacing between the spheres. If this value is less than the sphere diamter then the spheres will overlap.
fig, ax = plt.subplots(1, 2, figsize=[8, 4])
s = 35
im1 = ps.generators.lattice_spheres(shape=shape, r=r, spacing=s)
ax[0].imshow(im1, interpolation='none')
ax[0].axis(False)
ax[0].set_title(f'spacing = {s}')
s = 50
im2 = ps.generators.lattice_spheres(shape=shape, r=r, spacing=s)
ax[1].imshow(im2, interpolation='none')
ax[1].axis(False)
ax[1].set_title(f'spacing = {s}');
offset
¶
Controls how far away from the edge the first sphere is located. The default is the sphere radius but it can be more or less depending on the desired effect:
fig, ax = plt.subplots(1, 2, figsize=[8, 4])
o = 0
im1 = ps.generators.lattice_spheres(shape=shape, r=r, spacing=s, offset=o)
ax[0].imshow(im1, interpolation='none')
ax[0].axis(False)
ax[0].set_title(f'offset = {o}')
o = 25
im2 = ps.generators.lattice_spheres(shape=shape, r=r, spacing=s, offset=o)
ax[1].imshow(im2, interpolation='none')
ax[1].axis(False)
ax[1].set_title(f'offset = {o}');
lattice
¶
Controls the arrange of spheres. In 2D the options are simple cubic (‘sc’) and triangular (‘tri’). Note that the offset
and spacing
apply to the outer spheres when lattice='tri'
.
fig, ax = plt.subplots(1, 2, figsize=[8, 4])
L='sc'
r = 10
im1 = ps.generators.lattice_spheres(shape=shape, r=r, spacing=s, offset=o, lattice=L)
ax[0].imshow(im1, interpolation='none')
ax[0].axis(False)
ax[0].set_title(f'lattice = {L}')
L='tri'
im2 = ps.generators.lattice_spheres(shape=shape, r=r, spacing=s, offset=o, lattice=L)
ax[1].imshow(im2, interpolation='none')
ax[1].axis(False)
ax[1].set_title(f'lattice = {L}');
In 3D the options are simple cubic (‘sc’), face centered cubic (‘fcc’), and body centered cubic (‘bcc’). It’s more difficult to visualize in 3D but PoreSpy has a basic function called “show_3D” that works if the image is small:
fig, ax = plt.subplots(1, 3, figsize=[9, 3])
r = 10
s = 25
shape = [100, 100, 100]
L = 'sc'
im1 = ps.generators.lattice_spheres(shape=shape, r=r, spacing=s, offset=o, lattice=L)
ax[0].imshow(ps.visualization.show_3D(im1))
ax[0].axis(False)
ax[0].set_title(f'lattice = {L}')
L = 'fcc'
im2 = ps.generators.lattice_spheres(shape=shape, r=r, spacing=s, offset=o, lattice=L)
ax[1].imshow(ps.visualization.show_3D(im2))
ax[1].axis(False)
ax[1].set_title(f'lattice = {L}');
L = 'bcc'
im3 = ps.generators.lattice_spheres(shape=shape, r=r, spacing=s, offset=o, lattice=L)
ax[2].imshow(ps.visualization.show_3D(im3))
ax[2].axis(False)
ax[2].set_title(f'lattice = {L}');