bbox_to_slices#

Import packages#

import matplotlib.pyplot as plt
import numpy as np

import porespy as ps

ps.visualization.set_mpl_style()

Generate image for testing#

np.random.seed(0)
im = ps.generators.blobs([500, 500])
im3d = ps.generators.blobs([100, 100, 100])

Visualize the images

fig, ax = plt.subplots(1, 2, figsize=[8, 4])
ax[0].imshow(im)
ax[0].axis(False)
ax[0].set_title("2D image")
ax[1].imshow(im3d[25, ...])
ax[1].axis(False)
ax[1].set_title("3D image");
../../../_images/0df6cff8bc4c354c2bb37e88dd07cbe11b7c8a19e00ed68bdd7a2ed60e619d4b.png

Demonstration of function#

Define some bounding boxes in 2D and 3D:

bbox3d = [0, 0, 0, 50, 50, 50]
bbox2d = [0, 0, 50, 50]

The bounding box as defined by most packages are given as lists without much context as to how the values should be used. The bbox_to_slices function returns a tuple of slice objects than can be used to directly index into a ND-array to retrieve the area defined by the bounding box:

box2d = ps.tools.bbox_to_slices(bbox=bbox2d)
box3d = ps.tools.bbox_to_slices(bbox=bbox3d)
fig, ax = plt.subplots(1, 2, figsize=[7, 7])
ax[0].imshow(im[box2d])
ax[0].axis(False)
ax[0].set_title("2D")

ax[1].imshow(im3d[box3d][25, ...])
ax[1].axis(False)
ax[1].set_title("3D")
Text(0.5, 1.0, '3D')
../../../_images/ed5aaf865396f89026e864d9edaefb968c122036de51739133a0ea8480b22947.png