xray#

Visualize a 3D image as a 2D image in the style of an xray radiograph, with the brightness corresponding inversely to the amount of material the xray passed through.

[1]:
import porespy as ps
import matplotlib.pyplot as plt
ps.visualization.set_mpl_style()

Create a test image of fibers since the orientation is useful for visualization:

[2]:
im = ps.generators.cylinders(shape=[200, 200, 200], r=6, porosity=0.7)
fig, ax = plt.subplots(1, 3, figsize=[8, 12])
ax[0].imshow(im[50, :, :])
ax[0].axis(False)
ax[1].imshow(im[:, 50, :])
ax[1].axis(False)
ax[2].imshow(im[:, :, 50])
ax[2].axis(False);
../../../_images/examples_visualization_reference_xray_3_1.svg

axis#

The default behavior is the view the sample as though the xrays passed along the x-axis, but this is adjustable:

[3]:
fig, ax = plt.subplots(1, 3, figsize=[8, 12])

im1 = ps.visualization.xray(im)
ax[0].imshow(im1, cmap=plt.cm.plasma)
ax[0].axis(False)

im2 = ps.visualization.xray(im, axis=1)
ax[1].imshow(im2, cmap=plt.cm.nipy_spectral)
ax[1].axis(False)

im2 = ps.visualization.xray(im, axis=2)
ax[2].imshow(im2, cmap=plt.cm.bone)
ax[2].axis(False);
../../../_images/examples_visualization_reference_xray_5_0.svg