props_to_DataFrame
¶
Extracts the scalar values from a regionprops_3D
query and uses them to populate a pandas
DataFrame
.
import porespy as ps
import numpy as np
import matplotlib.pyplot as plt
import scipy.ndimage as spim
[01:03:59] ERROR PARDISO solver not installed, run `pip install pypardiso`. Otherwise, _workspace.py:56 simulations will be slow. Apple M chips not supported.
np.random.seed(7)
im = ~ps.generators.overlapping_spheres([100, 100], r=10, porosity=0.6)
plt.imshow(im, origin='lower', interpolation='none');
regions = spim.label(im)[0]
props = ps.metrics.regionprops_3D(regions)
plt.imshow(regions, origin='lower', interpolation='none');
df = ps.metrics.props_to_DataFrame(props)
/home/runner/work/porespy/porespy/src/porespy/metrics/_regionprops.py:282: FutureWarning: `skeletonize_3d` is deprecated since version 0.23 and will be removed in version 0.25. Use `skimage.morphology.skeletonize` instead.
return skeletonize_3d(self.mask)
df
label | volume | bbox_volume | sphericity | surface_area | convex_volume | num_pixels | area | area_bbox | area_convex | ... | euler_number | extent | feret_diameter_max | area_filled | axis_major_length | axis_minor_length | orientation | perimeter | perimeter_crofton | solidity | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 270.0 | 304 | 3.377624 | 59.811131 | 274.0 | 270 | 270.0 | 304.0 | 274.0 | ... | 1 | 0.888158 | 20.615528 | 270.0 | 20.302892 | 17.144166 | 1.570796 | 58.970563 | 58.589116 | 0.985401 |
1 | 2 | 292.0 | 352 | 2.966109 | 71.760513 | 301.0 | 292 | 292.0 | 352.0 | 301.0 | ... | 1 | 0.829545 | 24.186773 | 292.0 | 22.792054 | 16.944133 | -1.332241 | 64.384776 | 63.722113 | 0.970100 |
2 | 3 | 305.0 | 361 | 2.578463 | 84.981247 | 313.0 | 305 | 305.0 | 361.0 | 313.0 | ... | 1 | 0.844875 | 20.808652 | 305.0 | 19.710694 | 19.710694 | -0.785398 | 62.627417 | 62.056032 | 0.974441 |
3 | 4 | 701.0 | 952 | 1.939290 | 196.782654 | 747.0 | 701 | 701.0 | 952.0 | 747.0 | ... | 1 | 0.736345 | 35.440090 | 701.0 | 34.990789 | 26.707805 | 1.291699 | 105.840620 | 103.024717 | 0.938420 |
4 | 5 | 1237.0 | 2205 | 1.255313 | 443.927490 | 1665.0 | 1237 | 1237.0 | 2205.0 | 1665.0 | ... | 1 | 0.560998 | 63.788714 | 1237.0 | 70.153363 | 29.934308 | 1.478716 | 202.539105 | 195.878727 | 0.742943 |
5 | 6 | 255.0 | 285 | 3.677297 | 52.882927 | 259.0 | 255 | 255.0 | 285.0 | 259.0 | ... | 1 | 0.894737 | 20.615528 | 255.0 | 20.466711 | 16.191807 | 0.000000 | 58.142136 | 57.803718 | 0.984556 |
6 | 7 | 641.0 | 945 | 1.932482 | 186.040405 | 762.0 | 641 | 641.0 | 945.0 | 762.0 | ... | 1 | 0.678307 | 47.434165 | 641.0 | 52.035208 | 18.629564 | -1.383012 | 124.526912 | 120.740433 | 0.841207 |
7 rows × 22 columns