spheres_from_coords
¶
In cases where an external package is used to generate a sphere packing, this function can be used to convert the result to an ndimage
.
import porespy as ps
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
[20:01:25] ERROR PARDISO solver not installed, run `pip install pypardiso`. Otherwise, _workspace.py:56 simulations will be slow. Apple M chips not supported.
df
¶
The function is designed to accept the input coordinates and sphere radii as a pandas
DataFrame, which is why this argument is called df
…although as we’ll see this is somewhat flexible.
Let assume we have 4 spheres whose x, y, and z coordinates plus their respective radii are stored as column an Excel file with each row representing a sphere. This format can be directly read into a DataFrame using df = pd.read_excel
or df = pd.read_csv
, which is why the DataFrame is the format of choice.
Let’s enter a DataFrame by hand for this demonstration, then print it:
df = pd.DataFrame({'X': [10, 20, 40, 40], 'Y': [10, 30, 50, 10], 'Z': [0, 0, 0, 0], 'R': [5.0, 8.0, 17.5, 4.0]})
print(df)
X Y Z R
0 10 10 0 5.0
1 20 30 0 8.0
2 40 50 0 17.5
3 40 10 0 4.0
This array of spheres is only 2D as can be seen by all the ‘Z’ values being 0. The returned image will be in 2D.
im = ps.generators.spheres_from_coords(df)
The function also accepts numpy arrays with the same format as the above DataFrame:
arr = np.array(df)
print(arr)
[[10. 10. 0. 5. ]
[20. 30. 0. 8. ]
[40. 50. 0. 17.5]
[40. 10. 0. 4. ]]
im = ps.generators.spheres_from_coords(arr)
plt.imshow(im);
It is also acceptable to pass a python dict
:
dct = {'X': [10, 20, 40, 40], 'Y': [10, 30, 50, 10], 'Z': [0, 0, 0, 0], 'R': [5.0, 8.0, 17.5, 4.0]}
im = ps.generators.spheres_from_coords(dct)
plt.imshow(im);
It is also acceptable to leave the ‘X’ or ‘Y’ columns as 0’s. The function will ignore the column with all 0’s and return a 2D image.
dct = {'X': [10, 20, 40, 40], 'Y': [0, 0, 0, 0], 'Z': [10, 30, 50, 10], 'R': [5.0, 8.0, 17.5, 4.0]}
im = ps.generators.spheres_from_coords(dct)
plt.imshow(im);
Of course, it also works with 3D images:
dct = {'X': [10, 20, 40, 40], 'Y': [10, 30, 50, 10], 'Z': [4, 8, 12, 16], 'R': [5.0, 8.0, 17.5, 4.0]}
im = ps.generators.spheres_from_coords(dct)
plt.imshow(ps.visualization.sem(~im, axis=0).T);
mode
¶
The options are 'extended'
which means the spheres are allowed to extend beyond the edge of the image, and contained
meaning the sphere lie fully inside the image.
im1 = ps.generators.spheres_from_coords(df, mode='extended')
im2 = ps.generators.spheres_from_coords(df, mode='contained')
fig, ax = plt.subplots(1, 2)
ax[0].imshow(im1)
ax[1].imshow(im2);
smooth
¶
This controls the outer shape of the spheres.
im1 = ps.generators.spheres_from_coords(df, smooth=True)
im2 = ps.generators.spheres_from_coords(df, smooth=False)
fig, ax = plt.subplots(1, 2)
ax[0].imshow(im1)
ax[1].imshow(im2);